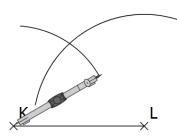
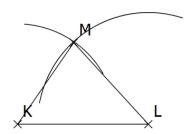
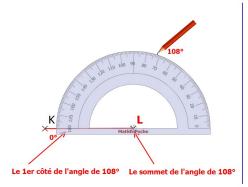
Objectif 2-1 Les trois constructions de base

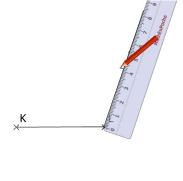
- Construction d'un triangle KLM tel que KL = 6 cm; LM = 5 cm et KM = 4,5 cm.
 - On sait que : KL = 6 cm, on trace le segment [KL].
 - On sait que : LM = 5 cm , on trace un arc de cercle de centre L et de rayon 5 cm.
 - On sait que : KM = 4,5 cm , on trace un arc de cercle de centre K et de rayon 4,5 cm.
 - On place le point M intersection des deux arcs de cercles tracés.
 - On trace les segments [KM] et [LM]

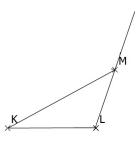




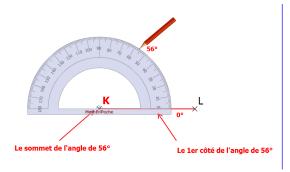
- Construction d'un triangle KLM tel que KL = 6 cm ; LM = 4,2 cm et $\widehat{KLM} = 108^{\circ}$.
 - On sait que : KL = 6 cm, on trace le segment [KL]
 - On sait que : $\widehat{KLM} = 108^{\circ}$, on construit l'angle \widehat{KLM}
 - On sait que LM = 4,2 cm, on place le point M. On trace le segment [KM].

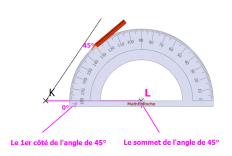


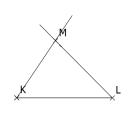




- Construction du triangle KLM tel que KL = 7 cm; $\widehat{MKL} = 56^{\circ}$ et $\widehat{KLM} = 45^{\circ}$.
 - On sait que : KL = 7 cm, on trace le segment [KL]
 - On sait que : $\widehat{MKL} = 56^{\circ}$, on construit l'angle \widehat{MKL}
 - On sait que : $\widehat{KLM} = 45^{\circ}$, on construit l'angle \widehat{KLM}
 - On place le point M intersection des deux demi-droites tracées.







Synthèse 1/5 c5t2_synthese.odt

Objectif 2-2 Connaître et utiliser l'inégalité triangulaire.

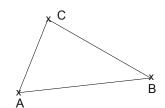
1. Inégalité triangulaire :

Retenir

Dans un triangle, la longueur d'un côté est inférieure ou égale à la somme des longueurs des deux autres côtés

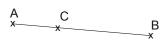
Si C n'est pas un point du segment [AB] :

$$AB < AC + CB$$



Si C est un point du segment [AB] :

$$AB = AC + CB$$



2. Longueur possible pour le troisième côté d'un triangle

Retenir

La longueur d'un côté doit être comprise entre la différence et la somme des longueurs des deux autres côtés.

3. Triangle constructible ?

Retenir

Pour que le triangle soit constructible il suffit de vérifier que la longueur **du plus grand côté** est **inférieure ou égale** à la **somme** des longueurs des deux autres côtés.

Synthèse 2/5 c5t2_synthese.odt

Objectif 2-3 Médiatrices (équidistance)

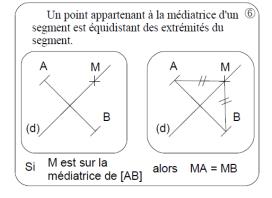
1. Médiatrice d'un segment

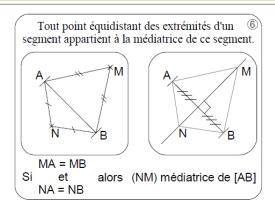
Définition

La médiatrice d'un segment est la droite perpendiculaire au segment passant par son milieu.

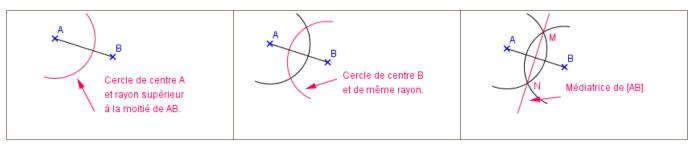
2. Propriétés d'équidistance

Si un point appartient à la médiatrice d'un segment alors ce point est équidistant des extrémités du segment. Si un point est équidistant des extrémités d'un segment alors ce point appartient à la médiatrice du segment





3. Application : construction à la règle et au compas



M et N sont équidistants de A et de B. (MN) est la médiatrice de [AB].

Synthèse 3/5 c5t2_synthese.odt

Objectif 2-4 Droites remarquables du triangle

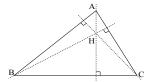
1. Hauteurs du triangle

Définition

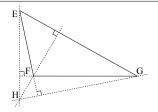
Les hauteurs du triangle sont les droites perpendiculaire à un côté et passant par le sommet opposé.

Propriété

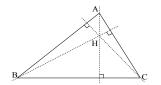
Les trois hauteurs sont concourantes en un point appelé orthocentre.



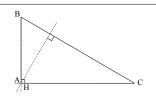
Remarques



Si un angle du triangle est obtus, alors l'orthocentre est à l'extérieur du triangle.



Si H est l'orthocentre de ABC, alors A est l'orthocentre du triangle BHC.



Si le triangle ABC est rectangle en A alors H et A sont confondus.

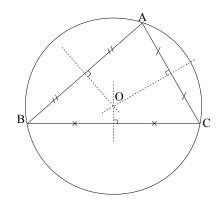
2. Médiatrices du triangle

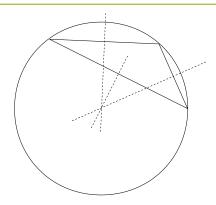
Définition

Les médiatrices du triangle sont les droites perpendiculaire aux côtés passant par leur milieu.

Propriété

Les trois médiatrices du triangle sont concourantes. Le point de concours est équidistant des trois sommets, c'est le centre **du cercle circonscrit** au triangle.





Remarque : Si le triangle a un angle obtus alors le centre du cercle circonscrit est à l'extérieur du triangle.

Synthèse 4/5 c5t2_synthese.odt

Objectif 2-5 Énoncer les propriétés des triangles particuliers.

1. Triangle isocèle.

Définition

Un triangle isocèle est un triangle qui a deux côtés égaux.

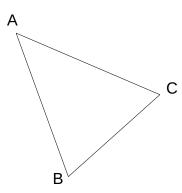
On peut aussi dire : « Un triangle isocèle est un triangle qui a un axe de symétrie. »

Propriétés

- Si un triangle est isocèle alors il a deux côtés égaux.
- Si un triangle est isocèle alors il a deux angles égaux.
- Si un triangle est isocèle alors il a un axe de symétrie.

Comment démontrer qu'un triangle est isocèle

- Si un triangle a deux côtés égaux alors il est isocèle.
- Si un triangle a deux angles égaux alors il est isocèle.
- Si un triangle admet un axe de symétrie alors il est isocèle.



2. Triangle équilatéral.

Définition

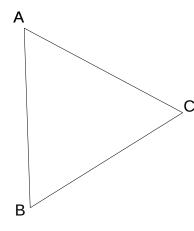
Un triangle équilatéral est un triangle qui a trois côtés égaux.

Propriétés

- Si un triangle est équilatéral alors il a trois côtés égaux.
- Si un triangle est équilatéral alors il admet trois axes de symétrie.
- Si un triangle est équilatéral alors chacun de ses trois angles mesure 60°.

Comment démontrer qu'un triangle est équilatéral

- Si un triangle a trois côtés égaux alors il est équilatéral.
- Si un triangle admet trois axes de symétrie alors il est équilatéral.
- Si chacun des angles d'un triangle mesure 60° alors il est équilatéral.



3. Triangle rectangle.

Définition

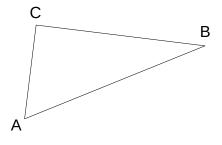
Un triangle rectangle est un triangle qui a un angle droit.

Propriété

- Si un triangle est rectangle alors il a un angle droit.

Comment démontrer qu'un triangle est rectangle

- Si un triangle a un angle droit alors il est rectangle.



Synthèse 5/5 c5t2_synthese.odt