Activité 1 Systèmes de deux équations à deux inconnues

1.	Prob	lème
----	------	------

Dans un bar, 2 cafés et 4 sodas coûtent 10 €, et 3 cafés et 2 sodas coûtent 7 €. Combien coûte un café ? Combien coûte un soda ?

2. Système d'équations

a. Choix des inconnues

Complète :c désigne **le prix** d'un, s désigne **le prix** d'un

La mise en équation de certains problèmes nécessite l'utilisation de plusieurs inconnues <u>indépendantes</u>. Ces problèmes ne peuvent généralement êtres résolus que s'ils permettent l'écriture d'autant d'équations qu'il y a d'inconnues.

b. Mise en équation

Traduis par une équation mathématique chaque information de l'énoncé :

Le système d'équations est le groupe constitué par ces 2 équations.

3. Solution

a. On se propose de résoudre, par essais et erreurs, le système de 2 équations à 2 inconnues :

$$\begin{cases} 2c + 4s = 10 & \textcircled{1} \\ 3c + 2s = 7 & \textcircled{2} \end{cases}$$

Remplace successivement c et s par les valeurs proposées et, dans chaque cas, dis si le couple (c ; s) est solution de l'équation \square et/ou de l'équation \square .

	équation 🛮	équation 🛮
Pour $c = 1$ et $s = 1$		
Pour $c = 3$ et $s = 1,50$		
Pour $c = 2$ et $s = 0.50$		
Pour $c = 3$ et $s = 1$		
Pour $c = 0.80$ et $s = 2.30$		
Pour $c = 1$ et $s = 2$		

Retenir : La résolution d'un système d'équations consiste à déterminer le ou les couples de valeurs (c;s) pour lesquelles les 2 équations sont **simultanément** vérifiées.

D'après le tableau précédent, le couple (c; s) = (...; ...) est une solution du système.

b. Réponse

Le café coûte € et le soda coûte €.

Attention : Ne pas oublier de tester la cohérence et la vraisemblance des solutions proposées,(par exemple, un café à 8 € indique sûrement une erreur).

En troisième, on étudie la résolution de systèmes de 2 équations du premier degré à 2 inconnues qui ont **une** solution unique(cas général), mais on peut rencontrer des systèmes qui n'ont pas de solution, ou encore une infinité de solutions, (voir § approfondissements).

Activités 1/4 c3t14_activites.odt

Activité 2 Deux problèmes, deux méthodes

1. Dans un théâtre

Énoncé

La salle compte 400 places. Les places de type parterre sont à 30 € et les places de type balcon sont à 20 €. Quand le théâtre est plein la recette est de 9 800 €. Combien de places compte le parterre ? Et le balcon ?

Choix des inconnues

Complète : p désigne b désigne b désigne

Mise en équation, (traduis par une équation chaque information)

La salle compte 400 places : $\dots + \dots = 400$

Les places de type parterre sont à 30 € et les places de type balcon sont à 20 €. Quand le théâtre est plein la recette est de 9 800 € : $30 \times + 20 \times = 9800$

Résolution du système, (complète les zones en pointillés)

$$\begin{cases}+....=400 & \textcircled{1} \\ 30\times.....+20\times.....=9800 & \textcircled{2} \end{cases}$$

L'équation \square permet d'écrire p =, et en remplaçant p par cette expression dans \square on obtient :

$$30 \times (\dots + 20 \times \dots = 9800$$

soit
$$30 \times - 30 \times + 20 \times = 9800$$

soit encore $\dots = \dots \times b$ et enfin $\dots = b$

En reprenant l'équation \square et en remplaçant b par on trouve $p = \dots$ soit $p = \dots$

Conclusion

Le parterre comprend places et le balcon

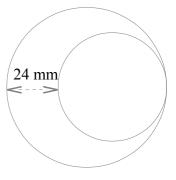
Cette méthode de résolution est appelée **méthode par substitution** (on substitue, c'est à dire on remplace, l'inconnue p par sa valeur en fonction de b, obtenant ainsi une équation à une seule inconnue, que l'on sait résoudre). Une fois la première inconnue déterminée, on calcule l'autre inconnue.

Activités 2/4 c3t14_activites.odt

2. En géométrie

Énoncé

La somme des longueurs de ces deux cercles est de 96π mm. Calculer les rayons respectifs en tenant compte des renseignements portés sur la figure.



Choix des inconnues

Complète : R désigne le rayon dur désigne le rayon du

Mise en équation, (traduis par une équation chaque information)

La somme des longueurs de ces deux cercles est de 96π mm : + = 96π []

La différence des deux diamètres est de 24 mm : ...R - ...r =

On peut diviser les deux membres de l'équation \square par 2π et les deux membres de l'équation \square par 2π .

On obtient alors un système équivalent dont les équations sont plus simples :

Retenir: Lorsque c'est possible, avant de résoudre un système on essaiera de le simplifier.

Résolution du système, (complète les zones en pointillés)

En additionnant membre à membre les équations \square et \square on obtient une nouvelle équation où il n'y a plus qu'une seule inconnue R.

$$\dots$$
 R = \dots d'où R = \dots

et en reportant cette valeur dans l'équation $\ \square$, par exemple, on obtient :

$$\dots -r=12$$
 ou encore $r=\dots$

Vérifications
$$\begin{cases} 2 \times \pi \times \dots + 2 \times \pi \times \dots = \dots \\ 2 \times \dots - 2 \times \dots = \dots \end{cases}$$

Contrôle de cohérence : > (on a bien R > r).

Conclusion

Le grand cercle a un rayon de; le petit a un rayon de

Cette méthode de résolution est appelée **méthode par combinaison ou méthode par addition** (on additionne membre à membre deux équations pour en obtenir une troisième où il n'y a plus qu'une seule inconnue).

Activité 3 Interprétation graphique

a. Énoncé

Lya doit construire un rectangle tel que son demi-périmètre mesure 10 cm et tel qu'il faut ajouter 2 cm à la longueur pour trouver le double de la largeur. Quelles seront les dimensions de ce rectangle ?

b. Choix des inconnues

On note x la largeur et y la longueur, en cm, de ce rectangle.

c. Mise en équation, (traduis par une équation chaque information)

Le demi-périmètre mesure 10 cm : $\dots + \dots = 10$

Il faut ajouter 2 cm à la longueur pour trouver le double de la largeur : y + ... = 2...

d. Résolution graphique du système, (complète les zones en pointillés et réponds aux questions)

Lya exprime y en fonction de x à l'aide de chaque équation.

Elle trouve v

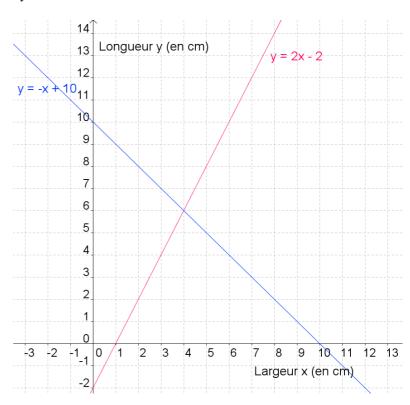
$$y=10-x$$
 pour \Box

$$y = \dots - \dots$$
 pour \square .

 Dans le repère ci-contre Lya a représenté graphiquement chacune des relations obtenues.

Comment a-t-elle procédé ?

- Lis sur le graphique les coordonnées du point d'intersection des deux droites.
- Vérifie par le calcul que ce couple de valeurs est la solution du système ?
- Indique les dimensions du rectangle que Lya doit construire.



Activités 4/4 c3t14_activites.odt