Algorithme d'Euclide

Calcule PGCD (1 789 ; 1 492) par la méthode des divisions successives.

Pour calculer le PGCD de deux nombres par la méthode des divisions successives, on applique la propriété : a et b sont des entiers naturels et $a \geqslant b$, PGCD $(a \ ; b)$ = PGCD $(b \ ; r)$ où r est le reste de la division euclidienne de a par b.

On compare d'abord les deux nombres : 1 789 > 1 492.
On effectue la division euclidienne de 1 789 par 1 492 : 1 789 = 1 492 × 1 + 297
donc PGCD (1 789 ; 1 492) = PGCD (1 492 ; 297).

On cherche maintenant PGCD (1 492 ; 297) : on applique à nouveau la propriété :

On cherche maintenant PGCD (297; 7): on applique à nouveau la propriété: On effectue la division euclidienne de 297 par 7: 297 = $7 \times 42 + 3$ donc PGCD (297; 7) = PGCD (7; 3).

297 7 3 42

On poursuit la même méthode avec 7 et 3.

On effectue la division euclidienne de 7 par $3:7=3\times2+1$ donc PGCD (7; 3) = PGCD (3; 1).

3

On poursuit la même méthode avec 3 et 1.

On effectue la division euclidienne de 3 par $1:3=1\times 3+0$ Le reste est égal à 0 c'est-à-dire que 1 est un diviseur de 3. donc PGCD (3:1)=1.

3 1 0 3

Ainsi PGCD (1 789 ; 1 492) = 1.

Présentation

Algorithme d'Euclide

Premier nombre 1789
Deuxième nombre 1492
PGCD 1

a	b	reste de la division	division euclidienne
1789	1492	297	1789 = 1492 x 1 + 297
1492	297	7	1492 = 297 x 5 + 7
297	7	3	297 = 7 x 42 + 3
7	3	1	7 = 3 x 2 + 1
3	1	0	3 = 1 x 3 + 0