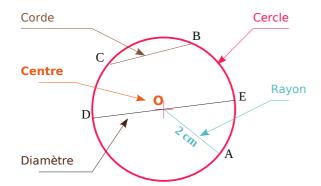
Objectif 6-1 Le cercle

1. Définition

Un cercle est formé de tous les points situés à une même distance d'un point appelé le centre du cercle. Cette distance est appelée le rayon du cercle.

Attention: Le centre du cercle n'appartient pas au cercle.

2. Vocabulaire



A, B, C, D et E sont des **points** du cercle.

O est le centre du cercle.

[OA] est un rayon du cercle.

[BC] est une corde du cercle.

La corde [DE] est particulière, elle passe par le centre du cercle : [DE] est un **diamètre** de ce cercle.

Les points D et E sont diamétralement opposés.

On peut désigner ce cercle de plusieurs façons :

- Le cercle de centre O et de rayon 2 cm, en abrégé, on note C(O; 2 cm).
- Le cercle de centre O passant par A.
- Le cercle de centre O et de rayon [OA].

Avant de tracer un cercle je dois connaître l'emplacement de son centre (pour pouvoir y « piquer » la pointe sèche) et son rayon (écartement du compas).

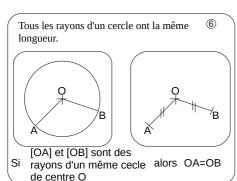
3. Propriétés

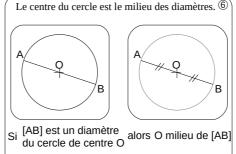
Rayons, diamètres

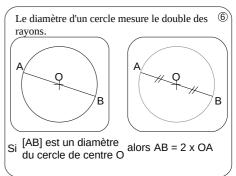
Tous les rayons d'un cercle ont la même longueur : OA = OB = OC = 2cm.

Le centre du cercle est le milieu des diamètres : O est le milieu de [DE] .

Le diamètre d'un cercle mesure le double du rayon : $DE = 2 \times OA$





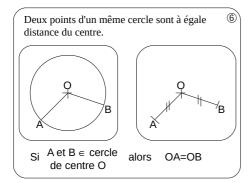


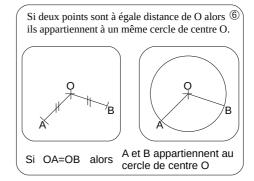
Synthèse 1/6 c5t6_synthese.odt

4. Caractérisation des points du cercle

À connaître

- Tout point qui appartient au cercle est à une même distance du centre.
- Tout point situé à cette distance du centre appartient au cercle.

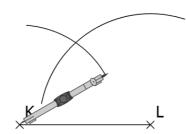


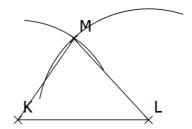


5. Une construction de base à connaître

Construction d'un triangle KLM tel que KL = 6 cm; LM = 5 cm et KM = 4.5 cm.

- On sait que : KL = 6 cm, on trace le segment [KL].
- On sait que : LM = 5 cm , on trace un arc de cercle de centre L et de rayon 5 cm.
- On sait que : KM = 4.5 cm, on trace un arc de cercle de centre K et de rayon 4.5 cm.
- On place le point M intersection des deux arcs de cercles tracés.
- On trace les segments [KM] et [LM]





Synthèse 2/6 c5t6_synthese.odt

Objectif 6-2 Médiatrices (équidistance)

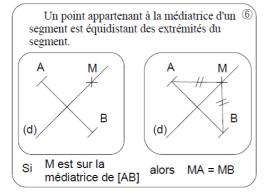
1. Médiatrice d'un segment

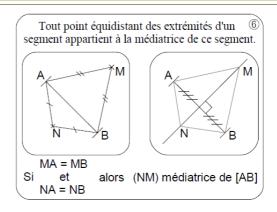
Définition

Tout segment admet deux axes de symétrie. L'un est la droite qui le porte, l'autre est la droite perpendiculaire au segment passant par son milieu appelée **médiatrice** du segment.

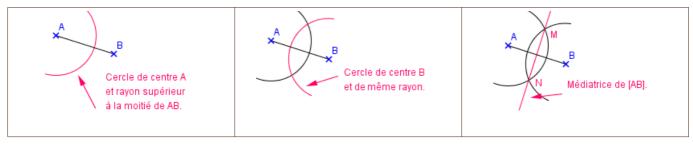
2. Propriétés d'équidistance

Si un point appartient à la médiatrice d'un segment alors ce point est équidistant des extrémités du segment. Si un point est équidistant des extrémités d'un segment alors ce point appartient à la médiatrice du segment





3. Application : construction à la règle et au compas



M et N sont équidistants de A et de B. (MN) est la médiatrice de [AB].

Synthèse 3/6 c5t6_synthese.odt

Objectif 6-3 Connaître et utiliser l'inégalité triangulaire.

1. Inégalité triangulaire :

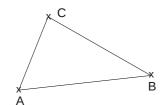
Si A, B et C sont trois points du plan, la distance AB est inférieure ou égale à la somme des distances AC et CB.

Retenir

Pour trois points quelconques A, B et C on a $AB \le AC + CB$ (inégalité triangulaire)

Si C n'est pas un point du segment [AB] :

$$AB < AC + CB$$



Si C est un point du segment [AB] :

$$AB = AC + CB$$

2. Longueur possible pour le troisième côté?

Problème

«Déterminer les valeurs possibles pour la longueur du troisième côté d'un triangle dont un des côtés mesure 7 cm et un deuxième mesure 3,3 cm.»

Solution

On doit avoir: 7-3.3 < BC < 7+3.3 soit 3.7 < BC < 10.3.

Retenir

La longueur du troisième côté doit être comprise entre la différence et la somme des longueurs des deux autres côtés.

Synthèse 4/6 c5t6_synthese.odt

3. Triangle constructible ?

Problème

«On donne les longueurs AB, AC et BC d'un triangle ABC. Comment savoir si le triangle est constructible?»

Solution

D'après l'inégalité triangulaire, on doit vérifier, que chaque longueur est inférieure ou égale à la somme des deux autres. C'est à dire, on doit vérifier que l'on a bien:

 $AB \leqslant AC + BC$ $AC \leqslant AB + BC$ $BC \leqslant AB + AC$

Si, par exemple, [AB] est le côté le plus long les deux dernières inégalités sont toujours vérifiées.

Il suffit alors de ne vérifier que la première inégalité.

Retenir

Pour que le triangle soit constructible il suffit de vérifier que la longueur du plus grand côté est inférieure ou égale à la somme des longueurs des deux autres côtés.

Exemple 1 : Construire le triangle IJK tel que IJ = 7 cm, IK = 3,3 cm et JK = 2,2 cm.

Le côté le plus long [IJ] mesure 7 cm. Donc, on doit avoir $IJ \leqslant IK + JK$

Or 7 > 3,3+2,2. Conclusion: le triangle n'est pas constructible.

Exemple 2: Construire le <u>triangle IJL</u> tel que IJ = 7 cm, IL = 12 cm et JL = 4 cm.

Le côté le plus long [IL] mesure 12 cm. Donc, on doit avoir $IL \leq IJ + JL$

Or 12 > 7+4. Conclusion: le triangle n'est pas constructible.

Exemple 3: Construire le triangle IJP tel que IJ = 7 cm, IP = 5 cm et JP = 6 cm.

Le côté le plus long [IJ] mesure 7 cm. Donc, on doit avoir $IJ \leq IP + JP$

Comme $7 \le 5 + 6$ le triangle est constructible.

Synthèse 5/6 c5t6_synthese.odt

Objectif 6-4 Énoncer et utiliser les propriétés des triangles particuliers.

1. Triangle isocèle.

Définition

Un triangle isocèle est un triangle qui a deux côtés égaux.

On peut aussi dire : « Un triangle isocèle est un triangle qui a un axe de symétrie. »

Propriétés

- Si un triangle est isocèle alors il a deux côtés égaux.
- Si un triangle est isocèle alors il a deux angles égaux.
- Si un triangle est isocèle alors il a un axe de symétrie.

A (d)

$\hat{B} = \hat{C}$; $\hat{A} = 180^{\circ} - 2\hat{B}$

Comment démontrer qu'un triangle est isocèle

- Si un triangle a deux côtés égaux alors il est isocèle.
- Si un triangle a deux angles égaux alors il est isocèle.
- Si un triangle admet un axe de symétrie alors il est isocèle.

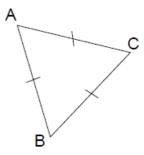
2. Triangle équilatéral.

Définition

Un triangle équilatéral est un triangle qui a trois côtés égaux.

Propriétés

- Si un triangle est équilatéral alors il a trois côtés égaux.
- Si un triangle est équilatéral alors il admet trois axes de symétrie.
- Si un triangle est équilatéral alors chacun de ses trois angles mesure 60°.



$\hat{A} = \hat{B} = \hat{C} = 60^{\circ}$

Comment démontrer qu'un triangle est équilatéral

- Si un triangle a trois côtés égaux alors il est équilatéral.
- Si un triangle admet trois axes de symétrie alors il est équilatéral.
- Si chacun des angles d'un triangle mesure 60° alors il est équilatéral.

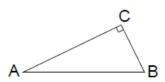
3. Triangle rectangle.

Définition

Un triangle rectangle est un triangle qui a un angle droit.

Propriété

- Si un triangle est rectangle alors il a un angle droit.
- Si un triangle est rectangle alors le centre du cercle circonscrit est le milieu de l'hypoténuse.



$\hat{A}+\hat{B}=90^{\circ};\hat{C}=90^{\circ}$

Comment démontrer qu'un triangle est rectangle

- Si un triangle a un angle droit alors il est rectangle.